4 research outputs found

    DNA methylation biomarkers in colorectal cancer: Clinical applications for precision medicine

    Get PDF
    Colorectal cancer (CRC) is the second leading cause of cancer death worldwide that is attributed to gradual long-term accumulation of both genetic and epigenetic changes. To reduce the mortality rate of CRC and to improve treatment efficacy, it will be important to develop accurate noninvasive diagnostic tests for screening, acute and personalized diagnosis. Epigenetic changes such as DNA methylation play an important role in the development and progression of CRC. Over the last decade, a panel of DNA methylation markers has been reported showing a high accuracy and reproducibility in various semi-invasive or noninvasive biosamples. Research to obtain comprehensive panels of markers allowing a highly sensitive and differentiating diagnosis of CRC is ongoing. Moreover, the epigenetic alterations for cancer therapy, as a precision medicine strategy will increase their therapeutic potential over time. Here, we discuss the current state of DNA methylation-based biomarkers and their impact on CRC diagnosis. We emphasize the need to further identify and stratify methylation-biomarkers and to develop robust and effective detection methods that are applicable for a routine clinical setting of CRC diagnostics particularly at the early stage of the disease

    Prediction of the treatment response in ovarian cancer: a ctDNA approach

    No full text
    Abstract Ovarian cancer is the eighth most commonly occurring cancer in women. Clinically, the limitation of conventional screening and monitoring approaches inhibits high throughput analysis of the tumor molecular markers toward prediction of treatment response. Recently, analysis of liquid biopsies including circulating tumor DNA (ctDNA) open new way toward cancer diagnosis and treatment in a personalized manner in various types of solid tumors. In the case of ovarian carcinoma, growing pre-clinical and clinical studies underscored promising application of ctDNA in diagnosis, prognosis, and prediction of treatment response. In this review, we accumulate and highlight recent molecular findings of ctDNA analysis and its associations with treatment response and patient outcome. Additionally, we discussed the potential application of ctDNA in the personalized treatment of ovarian carcinoma. Graphical abstract ctDNA-monitoring usage during the ovarian cancer treatments procedures

    β-radiating radionuclides in cancer treatment, novel insight into promising approach.

    No full text
    Targeted radionuclide therapy, known as molecular radiotherapy is a novel therapeutic module in cancer medicine. β-radiating radionuclides have definite impact on target cells via interference in cell cycle and particular signalings that can lead to tumor regression with minimal off-target effects on the surrounding tissues. Radionuclides play a remarkable role not only in apoptosis induction and cell cycle arrest, but also in the amelioration of other characteristics of cancer cells. Recently, application of novel β-radiating radionuclides in cancer therapy has been emerged as a promising therapeutic modality. Several investigations are ongoing to understand the underlying molecular mechanisms of β-radiating elements in cancer medicine. Based on the radiation dose, exposure time and type of the β-radiating element, different results could be achieved in cancer cells. It has been shown that β-radiating radioisotopes block cancer cell proliferation by inducing apoptosis and cell cycle arrest. However, physical characteristics of the β-radiating element (half-life, tissue penetration range, and maximum energy) and treatment protocol determine whether tumor cells undergo cell cycle arrest, apoptosis or both and to which extent. In this review, we highlighted novel therapeutic effects of β-radiating radionuclides on cancer cells, particularly apoptosis induction and cell cycle arrest

    Conjugated Linoleic Acid Treatment Attenuates Cancerous features in Hepatocellular Carcinoma Cells.

    No full text
    BACKGROUND: A growing number of hepatocellular carcinoma (HCC), and recurrence frequency recently have drawn researchers' attention to alternative approaches. The concept of differentiation therapies (DT) relies on inducing differentiation in HCC cells in order to inhibit recurrence and metastasis. Hepatocyte nuclear factor 4 alpha (HNF4α) is the key hepatogenesis transcription factor and its upregulation may decrease the invasiveness of cancerous cells by suppressing epithelial-mesenchymal transition (EMT). This study aimed to evaluate the effect of conjugated linoleic acid (CLA) treatment, natural ligand of HNF4α, on the proliferation, migration, and invasion capacities of HCC cells in vitro. Materials and Method. Sk-Hep-1 and Hep-3B cells were treated with different doses of CLA or BIM5078 [1-(2'-chloro-5'-nitrobenzenesulfonyl)-2-methylbenzimidazole], an HNF4α antagonist. The expression levels of HNF4a and EMT related genes were evaluated and associated to hepatocytic functionalities, migration, and colony formation capacities, as well as to viability and proliferation rate of HCC cells. RESULTS: In both HCC lines, CLA treatment induced HNF4α expression in parallel to significantly decreased EMT marker levels, migration, colony formation capacity, and proliferation rate, whereas BIM5078 treatment resulted in the opposite effects. Moreover, CLA supplementation also upregulated ALB, ZO1, and HNF4α proteins as well as glycogen storage capacity in the treated HCC cells. CONCLUSION: CLA treatment can induce a remarkable hepatocytic differentiation in HCC cells and attenuates cancerous features. This could be as a result of HNF4a induction and EMT inhibition
    corecore